
117

Appendix C

Old exam (2016)

• You can earn 90 points. You will get 10 points for free. So, you can obtain 100 points in
total, and your exam grade is calculated by dividing your score by 10.

• This exam consists of 5 problems. The first two problems are multiple choice questions, and
must be answered on the (separate) answer sheet. The problems 3, 4, and 5 are made using
a computer.

• The problems 3, 4, and 5 are assessed by the automated judging system. For each problem,
there are 10 test cases. Each test case is worth 10% of the points.

• Note that manual checking is performed after the exam. For example, if a recursive solution
is requested then a correct iterative solution will be rejected after manual checking, even
though the judge accepted it. Also, precomputed answers will be rejected.

• This is an open book exam! You are allowed to use the reader of the course, and the prescribed
ANSI C book. Any other documents are not allowed. You are allowed to use previous
submissions that you made to the judging system.

Problem 1 (20 points): Assignments
For each of the following annotations determine which choice fits on the empty line (.....). The
variables x, y and z are of type int. Note that X, and Y (uppercase!) are specification-constants (so
not program variables).

1.1 /* 6 < x + 2*y < 11 */ 1.4 /* x == X, y == Y */
..... y = x + y; x = x*(y-x);
/* 5 < x < 10 */

(a) x = x - 2*y - 1; (a) /* x == X*Y, y == X + Y */
(b) y = y/2 + x - 1; (b) /* y == X*Y, x == X + Y */
(c) x = x + 2*y - 1; (c) /* x + y == Y, x*(x-y) == X */

1.2 /* 2*x + 3*y == X, 2*y == Y */ 1.5 /* x == X, y == Y */
..... x = y; y = x;
/* z == X + Y */

(a) z = X + Y; (a) /* x == Y, y == X */
(b) z = 2*x + 5*y; (b) /* x == Y, y == Y */
(c) z = x/2 - y; (c) /* x == X, y == X */

1.3 /* x == X + Y, y == 2*X - 7 */ 1.6 /* x == X, y == Y */
..... x = x + y; y = x - y;
/* x == X + Y, y == Y*/

(a) y = (2*x-y-7)/2; (a) /* x == Y, y == X */
(b) y = (y+7-2*x)/2; (b) /* x == X + Y, y == X - Y */
(c) y = (y+7)/2 - x; (c) /* x == X + Y, y == X */

118 Old exam (2016)

Problem 2 (20 points): Time complexity
In this problem the specification constant N is a non-zero natural number (i.e. N>0). Determine for
each of the following program fragments the sharpest upper limit for the number of calculation steps
that the fragment performs in terms of N. For a fragment that needs N steps, the correct answer is
therefore O(N) and not O(N2) as O(N) is the sharpest upper limit.

1. int s = 0;
for (int i=0; i < N; i++) {

for (int j=i; j > 0; j--) {
s += i + j;

}
}
(a) O(log N) (b) O(

√
N) (c) O(N) (d) O(N log N) (e) O(N2)

2. int i=0, s = 0;
while (s < N) {

i++;
s = i*i;

}
(a) O(log N) (b) O(

√
N) (c) O(N) (d) O(N log N) (e) O(N2)

3. int n=N, a=2, p=1;
while (n > 0) {

if (n%2 == 1) {
p = p*a;
n--;

} else {
a = a*a;
n = n/2;

}
}
(a) O(log N) (b) O(

√
N) (c) O(N) (d) O(N log N) (e) O(N2)

4. int i, j=0, s=0;
for (i=0; i < N; i++) {

s += i;
}
for (i=0; i < s; i+=2) {

j += i;
}
(a) O(log N) (b) O(

√
N) (c) O(N) (d) O(N log N) (e) O(N2)

5. int i=0, s=1;
for (i=0; i < 4*N; i+=2) {

s = 2*s;
}
(a) O(log N) (b) O(

√
N) (c) O(N) (d) O(N log N) (e) O(N2)

6. int i=0, s=0;
while (s < N) {

s += i;
i++;

}
while (i > 0) {

s += i;
i--;

}
(a) O(log N) (b) O(

√
N) (c) O(N) (d) O(N log N) (e) O(N2)

119

Problem 3 (15 points): k-even sequence
An integer sequence is called k-even if the sum of any k consecutive terms of the sequence is even.
For example, the sequence [1, 1, 2, 3, 5, 8] is 3-even, since all sums 1 + 1 + 2, 1 + 2 + 3, 2 + 3 + 5,
3 + 5 + 8 are even. The sequence is clearly not 2-even, since the sums 1 + 2, 2 + 3, and 5 + 8 are
odd.

The input of this problem consists of a line containing two positive integers n and k (where
k < n), followed by a line containing a sequence of n non-negative integers. The output of your
program should be YES it the sequence is k-even, otherwise the output should be NO. The output
should not contain any spaces, and must end with a newline (\n):

Example 1:
input:
6 3
1 1 2 3 5 8
output:
YES

Example 2:
input:
6 2
1 1 2 3 5 8
output:
NO

Example 3:
input:
10 4
1 3 5 7 9 11 13 15 17 19
output:
YES

Problem 4 (15 points): Highest Common Ancestor
A rooted tree is a tree structure in which one node is the root, while other nodes of the tree are
descendants of the root. In the following figure, there are two rooted trees: one with root 0, and
the other with root 1.

These trees can be represented efficiently with a one-dimensional array parent[] , where parent[i]==j
means that node j is the parent of the non-root node i. For a root node r we have parent[r]==r.
This representation is used in the following code fragment, which is available as a downloadable file
ancestor.c from Themis:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int a, b, parent[20] = {0,1,1,0,3,1,3,1,4,5,8,5,8,5,11,11,13,13,16,16};
scanf("%d %d", &a, &b);
/* place here your own code */
return 0;

}

120 Old exam (2016)

Note that parent[i]<=i for all indexes i. A node n is called a common ancestor of a and b if a and
b are both descendants of n. Moreover, a node is called a highest common ancestor if there exists
no other common ancestor with a higher value. For example, the nodes 18 and 9 have two common
ancestors (5 and 1), of which 5 is the highest common ancestor. Clearly, the nodes 10 and 18 do
not have a (highest) common ancestor.
The input of this problem are two integers a, and b (where 0 ≤ a,b < 20). The output of your
program should be the highest common ancestor of a and b, or NONE if no common ancestor exists.
Example 1:

input:
18 9
output:
5

Example 2:
input:
15 5
output:
5

Example 3:
input:
10 18
output:
NONE

Problem 5 (20 points): Balanced subsequences
The increasing sequence [1, 2, 3, 4, 5] has 9 non-empty increasing subsequences that contain as many
even numbers as odd numbers. These 9 subsequences are: [4, 5], [3,4], [2,5], [2,3], [2,3,4,5], [1,4], [1,2],
[1,2,4,5], and [1,2,3,4].

The input of this problem consists of a line containing a positive integer n (where n ≤ 20),
followed by a line containing an increasing sequence of n positive integers. The output of your
program should be the number of non-empty subsequences that contain as many even numbers as
odd numbers.

The following incomplete code fragment is available in Themis (file balsubseq.c). Download it
and complete the code. You are asked to implement the body of numberOfBalancedSubsets. This
function should call a recursive helper function (with suitably chosen parameters/arguments) that
solves the problem. You are not allowed to make changes in the main function.

#include <stdio.h>
#include <stdlib.h>

int numberOfBalancedSubsets(int length, int a[]) {
/* Implement the body of this function.
* Moreover, this function should call a recursive helper
* function that solves the problem.
*/

}

int main(int argc, char *argv[]) {
int n, i, seq[20];
scanf ("%d\n", &n);
for (i=0; i < n; i++) {

scanf("%d", &seq[i]);
}
printf("%d\n", numberOfBalancedSubsets(n, seq));
return 0;

}

Example 1:
input:
5
1 2 3 4 5
output:
9

Example 2:
input:
5
2 4 6 8 10
output:
0

Example 3:
input:
9
1 2 3 4 5 6 7 8 9
output:
125

